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DETERMINATION OF COEFFICIENT OF THERMAL EXPANSION 

FOR BINARY COMPOSITE MATERIALS 

V. V~ Novikov UDC 539.32 

The coefficient of thermal expansion is determined for two-phase materials on the 
basis of the percolation model. 

I. Structural Model of Nonhomogeneous Material. The analysis of heat conduction and 
electrical conduction in binary heterogeneous materials with random distribution of equipol- 
lent components is usually based on the percolation theory (theory of flow-through) [i, 2]. 
One of the main applications of this theory is determining the topology of an infinite clus- 
ter or, in other words, the distribution of components in such material as their volume con- 
centration changes. It has been established [I, 2] that as the volume concentration v~ of 
the first component in a continuous binder changes over the 0 <~_v~ ~v e range (v c is 
the percolation threshold), there appear isolated inclusions (insular clusters) of the first 
component and with v c ~ vl bonds develop between them which transforms these insular clusters into 
infinite ones, this jumpwise transition occurring at the concentration v: = v c and being 
followed by formation of two equipollent infinite clusters when v: ~v2 ~0.5 in the material. 
A further increase of the volume concentration of the first component v~ > 0.5 results in a 
structural reversal, namely an infinite cluster of the second component will decrease and at 
the concentration v= = v c be jumpwise transformed into an insular one while an infinite clus- 
ter of the first component continues growing. 

Using the concepts of the percolation theory and the methods of reduction to an elemen- 
tary cell, a structural model of a heterogeneous material has been proposed [3, 4], an ele- 
mentary cell of which is shown here in Fig. I. The geometrical parameters of such an elemen- 
tary cell are given in Table i~ On the basis of this model theoretical relations for the 
effective thermal and electrical conductivities which agree closely with experimental data 
[3, 4] have then been derived. 

Now, using this percolation model, we will determine the coefficient of thermal expan- 

sion for a heterogeneous material. 
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z,/ / I  

Fig. i. Percolation model of heterogeneous material: 
(a) model; (b) elementary cell; (c) vx = v= = 0.5; 

(d) v~ < v c. 

2. Coefficient of Thermal Expansion. Both upper and lower bounds for the effective 
coefficient of thermal expansion ~Z of heterogeneous materials, based on the principle of 
minimum potential energy after deformation of a body, have been established [5, 6] by the 
integral method of #ections 

where 
~7~ {~i~ > + ~ , ( ~ ) ( 4 2  ( ~  (' '  

and Sklmn i s  t he  c o m p l i a n c e  t e n s o r .  The t e n s o r s  

B u ~  (x~), N~  (xi, x:), M~,~,~ (x~, x~) 

are determined from the equalities 

{~})" (r)}s~ = B~in~(~) (xh) {%z (r)}s, {~i~ (r)}q = -,ii,~(i) (xl, xs) {~hz (r)}r, 

{o~z (r)} L = Mkl~m (x~,. xj) {e~m (r)}L, {~0 (r) ~iJ (r)}L = Nkl (xi, X~) {%z (r)}t, 

(2) 

(3) 

(4) 

(5) 

which yield 

M h ~  (x~, xj)  = T~  (x~, ~ ~ P~') ~ 0 )  ,.. j j  ~ l q o ~ j m n  tx~xj~, (6) ~ j j ~ . ~ . ~ m ~ . ~ .  ~j) -~E~(X~,  X ' ~ ( ~ ' ( ~  " " 

= x:)czzj Bqkt(Xi, Xj) + L2(x i, xj) o~(2)B (~) " 

Here the brackets {,,.} and <...> denote averaging with respect to variables x~ x2, xa: 

i L I 

{...~L-- -~- !" (...) dx~; {...~s = T .t'.f ( :) ~x,d~,, (7) 
(s) 

(.. 
V 

! 

Here the lower bound el~ has been determined on the assumption that 

0 
ax~ {~ l  (r)}s = O, (8) 

arm the  uppe r  bound e~/. has been d e t e r m i n e d  on the  assumpt i on  t h a t  

{e.~,, (r)} L = O. (9) 
Oxz 

The superscripts in the tensor notation and the subscripts in the scalar notation indi- 
cate to which component of the material a given quantity refers. 
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TABLE I. Geometrical Parameters of Percolation Model* 

Range of 
v~ varia- 
t|nn 
O~ v~ ' e  

Vc<V~<0,5 

0 ,5<va<  
<l--vc 

1--vc<vx<l  

-gl~',) 

0 

t__( v~--Vc ", 

1 . ,2 /3  -~ 
C - -  ~  

0 
2(SlYO )b2• 

x d - v J  ~) 
2 S ~ / 2 X  

x 0-~.,~. / s ) 
~,2/3 
~';' 0 

u~ 13 

sZ Z 

1-~'Y'~ (s~ ~ 2/~ - )ll~ l - - v  c --S~ 

3 \ l--v~/'d/ I--S~/2 

0 0 

Z 

vl ]3 
C 

l-v1/3 

1 -v~  13 

- _ -= (~.-~cl.., ; *St = ~ + (~$M) S)g(z); S \ i----i~/ g(z) = 5.53z-8.3z = + 

3.23z s + 0.54z"; z = K2/K,, K2 < K,. 

When the components are homogeneous and isotropic, then expressions (2) and (3) yield 

0~' = {o~lS 1 (xh) -~ o~,~S~ (xk) -@2 51 (xh) 52 (x/~)(~ ~'1)(1~1- aS) } 
a ~  (xk) + a ~  (x~) z.' 

or = {8 (x .  xj) ~1 (x .  xj)} L E-~, 

6 (x. xj) ~f~  (x. x3 + ~Z~ (x. xA + 2 
a~s (x. xA + a~Z~ (x. xj) 

[ -s (x. x~) -s (x~, xj) 2 (c~ - -  c~)~Z~ (x~, xj)Z~ (x~, xj) a~,h (x,, Xj) 
�9 E1 -~ E2 a l l  1 (xl, xj) + a2E 2 (x b xj) 

3Ki - -  2~h 9K~ a ~ -  18Kiwi , e i = -  - -  ; E - - - - - ,  
3K~ + 4~i 18Ki~ 3K -+- p~ 

L1 (xf, x])-Z 2 (x.i, xj)(o(., 1 - -  (Y,.~)(C 1 - -  C2) ala2 

(I0) 

(11) 

, (12) 

- ' ,  (13) 

where Li(xi, xj) is the length of a segment parallel to the Ox k axis in the i-th component, 
Si(Xk) is the area of the intersection of a representative volume V by a plane perpendicular 
to the Ox k axis and occupied by the i-th component (i = I, 2), Li(xi, xj) = Li(xi, xj)/ 
(L1(xi, xj) +L2(xi, xj)), Si(Xk) = Si(xi, xj)/(St(Xk) + Sz(xk)) . 

In subsequent calculations, besides geometrically modeling the structure of a hetero- 
geneous medium, we will also use the method of step-by-step quasihomogenization [5, 6]. The 
gist of this method is to do the following: first extracting a representative volume V of 
the heterogeneous material, then partitioning this volume V into regions readily integrat- 
able and determining their effective properties, and then, with each region regarded as a 
quasihomogeneous one, determining the effective properties of the entire represemtative 
volume V. 

Since determining the coefficient of thermal expansion for a subregion of volume V in- 
volves the elastic properties, which must be known, we will use here the following relations 
for the bulk modulus K and the shear modulus B of any subregion 

--K L - 2  {KP} z s' (14) 

{P}s -' 

l --1 

where  P = 6m/(3  + 4m),  d = (3 -- 2 m ) / ( 3  + 4m),  n = 9 / ( 3  + 4m),  m = w/K, w i t h  K ' ,  ~ '  o b t a i n e d  
on t h e  b a s i s  o f  a s s u m p t i o n  (8) and K",  U" o b t a i n e d  on t h e  b a s i s  o f  a s s u m p t i o n  ( 9 ) .  

The b r a c e s  { ' . . } L  and { ' ' ' } S  i n  e x p r e s s i o n s  ( 1 4 ) - ( 1 7 )  a r e ,  a c c o r d i n g  t o  d e f i n i t i o n s  
( 7 ) ,  pu t  i n  t h e  fo rm 

~fh = f l~,  (x,, xj) + hT-.~ (x,, x.,), {f}~ = f,g,(x,,) + ff i~ (x,,). 
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TABLE 2. 

Volume 
CO l lC Fi., 

Moduli of 

Young's modulus, 
(kgf/mm~). 10 .4 

5,3 6,76 
10,O 6,4 
16,4 5,90 
20,8 5,67 
25,0 5,34 
30,5 5,04 
45,0 4.28 

Elasticity 

Shear modulus, 
(kgf/mm 2) �9 10 -4 

calc. expt. 

6,73 
6,419 
5,92 
5,64 
5,327 
5,013 
4,27 

*Experimental 

of WC-Co Alloy* 

Bulk modulus, 
(kgf/mmZ) �9 I0-4 

calc. expt. 

2,83 2;81 
2,672 2,665 
2,53 2,447 

2,178 2,184 
2,044 2,026 

calc. expt. 

3,696 3,75 
3,548 3,62 
3,41 3,5 

3,247 3,17 
3,170 3,14; 3,18 

data taken from [8]. 

TABLE 3. Young's 

Volume conch, of 
tungsten, % 

0 
I0 
20 
30 
40 
50 

100 

Modulus of W--SiO ~ Composite 

Young's modulus. (kgf/mm z)" I0-4 

calc. according to 
relations (25)-(34) 

0,805 
0,895 
1,040 
1,226 
1,489 
1,728 
3,550 

calc. according to 
relations in [10, 11] 

0,805 
0,920 
t ,060 
1,210 
1,441 
1,692 
3,550 

expt. [9] 

0,805 
0,909 
1,055 
1,180 
1,375 
1,599 
3,550 

For determining the effective properties we will use 
of an elementary cell [7], which yields results close to 

Upon partitioning 
coefficient of thermal 

the combined method with sections 

a = - - - 1  (cd-i-oV), K =  I (K' -6 K"), Ix= I (Ix, + Ix.). 
2 

an elementary cell into subregions as shown in Fig. 
expansion as 

b~ (S~ + S~) -6 b3 (S~ -6 $3) ' 

ib, we 

(18) 

define the 

(19) 

where 

51 = =J2 + a~ (I --~) -6 2 (Cl-- c2)(% -- ~2)~ (I --•) ala 2 . 

a~L + a~ (1 - ~) 

62 = %71-6 0% (1 - -  l 0 + (cx - -  c~)(al - -  %)-fl (1 ---{1) ala2 ; 
a~7~ + a~ (] --71) 

33 = 6161S2 + a2b~S-3 . 

6~ = alal'S1-6 3232S2 18K#i 
�9 , i = 1 , 2 ;  

alS1-6 a~S2 ' ai = 3Ki + 4~i 

b1 18• " Pi  6mi ~i 3 K i " 2 ~ i  
= , = ,; m i -- ; ci -- ; 

3• + 47i 3 + 4mi K1 ]SK#i 
h~ = 6m~ ' 7i 3 -- 2mi 9 

I3 + 4m; ; m~ . . . . .  ; d1 = ; n~ = -; 
• 3 + 4mi 3 + 4m~ 

•  ~ /2§ ( I - - ~ ) - - 2  = . K1Pll~ + K2P~ (1 - -  12) 

{ n. - n2 Ida. +d.(1---Ti)i[P;l . -6 P2(1--1-1) ] } - i  
/ 

• + •162  

• = h ~  + h~N3 ; 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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K1Pl-gl + K2P~S~ . 
xt = PlS1 @ P~-[~l (29) 

"~1 = ~t 1 ~_t2 ; ? 2 =  ll  -}- 1__~ 1 --1 ' ~ 2  , (30) 

V3='l'l ~ 2 @ ~  3 -~-~'~. S~.-t-gz ; (31) 

$1 g~ (32) 

It is to be noted that expressions (25)-(32) yield the effective bulk modulus K and shear 
modulus ~. Accordingly, we will express the former as 

and the latter as 

K = ~3h3 ($2 -1- S~) -I- x4h~ (31 -I-S~) (33) 

---- ?3 (32 q- S-~) + ?~ (Si + ~). (34) 

3. Comparison of Theoretical Results with Experimental Data. The graph in Fig. 2 de- 
picts the coefficient of thermal expansion calculated according to relations (19)-(32) with 
experimental data on W-Co alloys, this comparison indicating a rather close agreement. 

A comparison between the moduli of elasticity calculated according to relations (25)- 
(34) and experimental data on the WC-Co alloy [8] and the W--SiO= composite [9] is made in 
Tables 1 and 2. The maximum error of calculations is here smaller than 8%. 

The increasingly stringent precision requirements in determination of thermophysical 
properties of materials used in power engineering pose a problem of predicting a set of 
thermophysical properties from a single standpoint. 

According to the well-known thermodynamic relation, the difference between specific 
heat Cp at constant pressure and specific heat C V at constant volume in homogeneous media 
(phases) can be defined as [12] 

Cpi -- Cvi = 9Kio~ VoT, (35) 

where Vo is the molar volume and i = i, 2. From the condition for transition in a quasi- 
homogeneous medium one can conclude that Eq. (35) will be satisfied also for the effective 
properties 

Cp -- Cv = 9Koc~VoT. (36) 

It also follows from definition (35) that 

< C~ > -- < Cv > = 9 ( K ~  ~ > VoT. (37) 

The bracket of possible Cp values for a binary material is [13] 

O~ < C~ >--Cp~9 K'K~v'v~(~ (38) 
<K> 

It therefore is possible to predict the values of constant-pressure specific heat Cp and of 
constant-volume specific heat C V for a binary material on the basis of relations (35)-(38) 
with the aid of expressions (19) and (33). 

Both thermal and electrical conductivities of binary materials have been determined 
theoretically on the basis of the percolation model [3, 4], and the results then compared 
with experimental data. The expressions for the thermal conductivity X and the shear modu- 
lus g have the same form, moreover, which can be explained by the same form of the equation 
describing both characteristics 

qi = - -~:JV T, •i = I~iJ$J �9 (39) 

These expressions, therefore, will yield the coefficient of thermal expansion ~ as well 
as the thermal conductivity X, the specific heats Cp and CV, and the moduli of elasticity K, 

for binary materials. 
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Fig.  2. C o e f f i c i e n t  of  thermal  expansion ~ (1/~ 
of  W--Cu a l l o y :  1) T = 293-373~ 2) T = 293-773~ 
dots represent experimental values [14]. 

In conclusion, it will be noted that the model of a binary material (Fig. I) under con- 
sideration here can evolve into the Odelevskii model with isolated inclusions [14] (Fig. id) 
or into the Frey--Dul'nev model with interpenetrating components [15] (Fig. ic). For describ- 
ing the properties of a heterogeneous material with isolated inclusions or with interpene- 
trating components one, therefore, can use expressions (19)-(34) with the geometrical param- 
eters defined either as 

34 = 1 - -  u~ [3, .~,2 = [jll[3; 0 ~ . ~ u l <  I , 

in the Odelevskii model [15] or as 

S ~ = S ~ = C  "2, C = 0 , 5 + A c o s ( 2 ~ - - ~ ) . 3 .  

in the Frey--Dul'nev model [16]. When O ~va~ 0.5, then A = -I and ~ = cos-*(l -- 2va). 
When 0.54 v2 ~ I, then A = i and ~ = cos-1(2v= -- i). HeroS==0, S~= 2C(I -- C) andg, = (i -- C) 2, 
where C = ix = ~=. 

NOTATION 

vi, volume concentration of the i-th component; Vc, percolation threshold; ~, coefficient 
of thermal expansion; oij, stress tensor; eiJ, strain tensor; K, bulk modulus; ~, shear modu- 
lus; SijkZ , compliance tensor; Cijkl , elasticity tensor; Li(xi, xj), length of a segment 
through the i-th component perpendicular to both axes Ox i and Oxj; and Si(Xk) , area of a sec- 
tion through volume V perpendicular to the Ox k axis and occupied by the i-th component. 
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METHOD OF DETERMINING THE PHASE VARIABLES OF THE SOLID 

PHASE IN DISPERSE FLOWS 

N. N. Prokhorenko and S. A. Tikhomirov UDC 536.248:66.095.5 

A method was developed for contactless measurement of the kinematic characteristics 
of the solid phase in disperse flows. The proposed method was substantiated empir- 
ically and the error was determined. 

Although knowledge of the coordinates and velocity fields of both phases in multiphase 
systems fully determines the intensity of the target processes in heat and mass transfer, 
until now they have been little studied due to the lack of experimental methods of investi- 
gating them. 

This article attempts to develop a method of determining the empirical probability dens- 
ity function for the coordinates and absolute velocity of a test particle in a disperse 
flow -- in particular, in apparatuses with a monodisperse fluidized bed. To do this, we need 
an empirical method of determining the phase variables of the test particle. 

The familiar method in [I, 2] for measuring the coordinates of an isotope-labeled par- 
ticle has several advantages over other methods [3, 4]: i) it allows for continuous record- 
ing of the position of the particle in the fluidized bed; 2) it permits measurements to be 
made at any point in the apparatus; 3) the transducers are located outside the apparatus and 
do not d~sturb the natural character of flow of the phases; 4) a test particle labeled with 
the Co 6~ isotope is representative in the sense that, for practical purposes, it is thesame in 
size and weight as the other particles in the monodisperse bed. 

However, the method does have several shortcomings, making it impossible to evaluate 
the particle concentration field in the phase space~ instability of the electronic equip- 
ment, since the signal is analyzed in analog form; oscillograms based on calibration curves 
are analyzed manually; it is necessary to differentiate the experimentally obtained coordin- 
ates in order to obtain estimates of the absolute velocity of the tagged particle [5]. 
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